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SLNGM-DEGREE-OF-FREEDOll-FLLTTTm CALCUUTIONS FOE A WLWG LW SUMWNIC _
POTENTTIM FLOW AIID CONII?ARK30N WITH AN E.XPERINIENT 1

ByH.iRRY L. Rumax

SLJ31N1ARY

.4 study oj singledegree-of-jreeclom pitching oscillatio~is oj a
wing has been presented. This study includes the e~ects of
JIach number and structural dampz”ng and is primarily an
extension oj a recent paper by SmiJg in which incompressible
-flow uws considered. fie actual exzkence oj 8tkgledegrw-of-
jreedorn jlutkr UW8 demonstrated by some low-speed tests of a
u-ing, picoted a short distance ahead of the leading edge with a
geometric aspect ratio of 5.87. In g~nerai, good agreement
was found between experimental and cakulafed results jor high
calues qf an inertia parameter corresponding to high altitudes,
but di$wnces exist jor low ~alues of the inertia parameter.
The e$ect of aspect ratio has not been considered in the calcula-
tions and cotdd hare an appreciable in$wnce on the oscillation.

INTRODUCTION

The possibility of the existence of singkdegree-of-freedom
oscillatory instability or flutter in incompressible flow, both
potential and separated, has been know-n for some time. As
early as 1928 Ghwert (reference 1) noted the possible 10SS of
damping of a pitching Whg h incompressible flOW which
might. lead to an osc~atory instability that may be referred

to as singledegme-of-freedom flutter. In 1937 POSSiO made
similar observations for supe~-onic flow (reference 2) and” in
1946 this study Fas elaborated on by Garric~ and Rub~o~~
(reference 3), who observed that, under certain conditions,
a single-degree-of-freedom osc.ilIation is possible in incom-
pressib~e flow. Subsequently, SmiIg (reference 4) made
calculations showing the ranges of axis-of-rotation location
and an inertia parameter which could lead to a.n oscillatory
instability in pitch or yaw for the incompressible case.
Also, 31iles (reference 5) has indicated that calculations of
stabiIiLy derivatives based on steady air forces might lead to
erroneous damp h-g derivatives, especially for high-peed
and short-tad-length aircraft. In addition, he pointed OUt
that the compressibility effects in nonstationary flow are not
correctly taken into account by simply introducing the
Prandtl-G1auert factor since compressibility induces addi-
tional phase lags.

1Supersedesh’ACA T>’ 23S6,“KwI-Deg&---F~do~utwrwr Ce.khkms for a wing

~Tnti recently whatever interest w-as shown in single-
degree-of-freedom flutter was largely academic because the
ranges of parameters invoked did not appear practical.
Howewr, with current airplanes and missiles deai=gned for
high speeds and high altitudes, the subject becomes a more
practical one, for under these conditions undamped oscilla-
tions of even very small amplitude may become important.
In addition, calculations of singledegree-of-freedom tlutter
may represent a useful, easily obtained limit for cases of
coupled flutter iuvol-ring other degrees of freedom.

This report considers specifically the type of single-degree-
of-freedom flutter associated with the pitching of an airfoiI
about various locations of the axis of rotation. It extends
the work of reference 4 to include the effects of Mach number
up to ,31=0.7 and discusses the efiect of structural damping .
for one Iocatiog of the axis of rotation. The resuhs of an
experimental investigation which confirms the existence of
singledegree-of-freedom flutter are compared with the
theoretica~ values. The calculations -were based on two- .
dimensional aerodynamic-force coefficients and involved a
single degree of freedom. The effect. of aspect ratio and
the coczxistence of other degrees of freedom would modify
the resuIts to a large ~xtent.

SYNIBOLS

a nondimem~ional distance from midchord to axis of
rotation, based on half-chord, positive rearward

b half-chord
e spring constant
c= coefficient of torsional rigidity per unit length
d. damping coefficient
F and G functions of k for oscillating plane flow

y structural damping coefficierk

a moment of inertia about. axis of rotation per unik
length

z= out-of-phase (imaginary) componenh of moment on
airfoil about a..xis of rotation per unit length

k reduced frequency (bw/r)
m mass

x Mac-h number
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M= aerodynamic moment per unit length
.11,, M,’ reaI par~ of aerodynamic moment for incompressible

and compressible flow, respectively
.Ifn, Z. aerodynamic ffutter coefficients (see reference 6)

(n=l,2,3,4)
F.= in-phase (real) component of moment on airfoil about

axis of rotation per unit length
o flutter velocity
‘r displacement
a angu Iar displ wement, about, axis of rot at.ion, posi-

tive in staIIing direction

P fluid density
@ circular frequency at flutter
<da natural circnlnr frequency

ANALYSIS

1NTR0DUCT0R% CONSIDERATIONS

Before the specific example of singIe-clegrec-of-freedom
pitch ing fiut ter is discussed, it may be advantageous first
to review the concept of a single-degree-of-fre~clorn vibrating
system and then to show the relation of this example to an
aerodynamic system. The linear differential equation for a
free system consisting of a mass m, a spring having a spring
constant c, and a viscous damper having a coefficient, d is

mx+-dx+ex=o (1)

The ~notion represented by this eqnat ion is damped if d
is a positive quantit,yj as is ordina.riIy the case. If d should
be negat.ivcj the mo fion is undamped, a condition of dynamic
instability exisk? and? if d is zero, harmonic oscillations
corresponding to a borderline condition bettveen damped
and undamped motion may exist.

For a, system such as an aircraft wing oscillating in a
steady air stream, the same type of equation would apply as
for the mass-spring-damper system previously mentioned.
However, the coefficients m, d, and c of equation (1) vW
now have added components associated with the aerod.v-
namim. The eq uat ion for a wing oscillating in pitch in a
steady t\~o-dimensions.I air stream is

Iaii+(l+iga) caa=Ma(a, &,ii, ‘ . .) (2)

\vllere Ma represents the complex aerodynamic moment,,
w-hich is a function in part of amplitude a, ~elocit.y ~, ac-

bu
c~leration &j reduced frequency L=T location of axis of

rot ation a, 11 ach number M, and sweep angk. Equation

(2.I is complex and may be separated into two components:
one associated with the clamping of the system (sometimes
called the imaginary part) and the other associakd with
the flutter frequency and velocity (sometimes called the
real part).

EQUATION FOR PITCHING OSC#LLhTIC)KS, .W=O

From reference 7, the vaIues of ~he damping equation an(l
the frequency equation for two-dimensional incompressible
flow am as folIows:
Damping equation

[ (2 ):G-(H2F+G-’)I+
T..=; – ‘+a

I. tie 2=0
9.— (-)zpb4 ti

(3)

Frequency equation

‘aa=-(i+a’)+(i--a’)w+a)f+
+m9’-’l=0 (4)

Equation (3) is equivalent LO the vanishing of the dampi]]g
coefficient. d of equation (1) and thus represents a borderline
condition between dampd and undamped oscillations. TIJC
flutter frequency and velocity may then be de trrminerl from
equation (4).

Equation (3) cannot be solved explicitly for k since the
functions F and G are transcendental functions of k. There
are sc%eral methods of solving this equation; a convwient
one, given in reference 8, is to assume values of l/k and SOIYC
for the structural dam~)ing coefficient. The type of struc-
tural damping force commonIy used in tlutttr calculation is
in phasr with the velocity but proportional.c to the amplitude.
If the damping co@icient is plotted against l/k, the value of
l/k for any given damping coeffkien~ may be dekrmined.
TVhen the value of I/k tha~ satisfies the imaginary or damping
part of the moment equation has bceu determind, the fre-
quency of oscillation and the velocity may be detcrnlincd
from the real part of the moment equation (equation (4)).
Equation (4) may be puL in clifferent form as folIows:

If the torsionaI restraint u. is zero, equation (5) reduces to

1.
—--=Mr
7i-pb4

(6) ,

so that, if the value of the inertia parameter IJrPb4 exceeds
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the value of M, for the given =Yis-of-rotation location, the
oscilktion can exist. at aII airspeeds above zero speed. The
frequency is then a direct function of the velocity as defined
by the following Equation:

b~~=—
1!

(.7?

where l/k is the value of the flutter-speed parameter associ-
ated with the borderline co~dition between damped and un-
damped oscillation for the given axis of rotatiou.

EQUATION FOR PITCHIXG OSCILL.4TIOX L<CLUDIXG MACH ?iU.MBEE

In order to cousider the effect of Mach number, the results
,}f reference 6 may be used. The method of computation is
the same as described in the preceding section; however, the
aerodynamic moment M= has been redefined to include the
effect of 31ach number.

ThtI damping [imaDtiary) component (see references 6
and 7) is

L=

where

The aerodj-namic coeffkie~ts Ms and Z. are functions mdy
of redlleed freq&mcy k and l[ach number (see reference 6).

ANALYTICAL RESULTS

The pllrpose of this section is to show the results of some
calculations made to determine the effect of some of the
independent variables on the flut~er speed and flutter
freque~cy.

In figure 1, the fIutter-speedparameter U/hJ= is pIoLted

a~a~st the ~ertia parameter Ia/irP@for three >Iac.h num-

bers, .31= 0, M= 0.5, tmd M=O.7. The region to the right
and above a giren curve is the unstable region, w-hcreas the
region to the Ieft and beIow is the stable region. km-easing
altitude is equi-raIent to increasing values of the inertia
parameter. (Note the Imge change in scale of fia% 1 (a) to 1 (f).)

.$s an illustration of @ meaning of the cum-es of figure 1,
the .11=0 case of fi=gwe 1 (a) (a= —1.0) is discussed. If the

vaIue of the kertia parameter is below 571 (the asymptote),
the configuration vdl be stabIe. .% the aItitude is increased,

the inertia parameter will increase and, if it is equal to 571,
the velocity aL which an unstabIe osciktion could occur .,
~o~d be ~fiuite. ~ &ht increase in the inertia parameter

mouId now have a very great effect in reducing the criticaI
~eIocity. For very large values of the inertia parameter,
the curve is aq-rnptotic to a value of u/bu~ which is equal to
the re(lueed velocity c/6tJ (that is, I/k)l ~~ch for th~ case .
is 24.7.
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The effect of hIach numkr is now examin~d. First, and
most important, a large reduction in the stabk region is to
be Doted. For example, in figure 1 (a), the uppw limit of
the stable region for M= o for the inertia parameter IJ~Pb4
is 571 and this limit is reduced to 137 ~t .lf=O.7.

280 .–.

240

200

I60

*
lka

120

80

1

--744=05 ~:o..- -’,
,---

\

“1; I

t
0 1,000 2poo 3,000, 4,000 5,000 6,000 7,000

(c) U=-2.C;
~ICURE 1,—Continued,

700
(ej

600 !

--~-T”---
----fixk of rototion

..I/k = 19,8 ,,-

500

~J “-
f

c— ‘o
+--.4

I/k =47,8
400 - -“ ‘--f

,...- I/k= 16;,4
j

Unstable
. . . t

300

:~i ~ ‘ T ; - . - ‘- t

, ...-3.223

%0,300 --
200- –-–

.17500,/ “ M=o -- “-”

-./.--M=0.5
100 -

,,, ..-M=O.7/--
L ,,,

I I
o 200,000 400,000 600,000

Another effect is that, for a given spetvl u, the fueq uency
of oscillation wotdii increase for an increase in Mach number.
For instance, in figure I (a), the frequency of oscilhtt ion
WOUMhe increased by a factor of 2 }vith an immwse in Xiarh
number from O to 0.7.
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In figure 2, the frequency ratio (COIWJ2is pIot ted against
the inertia parameter lJTPb&. This curve has the same
vertical asymptote for the inertia parameter as for the cor-
responding reduced-~-elocity cur~’e (fig. I) ~d the u-wtable
region is again to the right and abo \-ethe curve. The inertis

parameter increases as & aItitude increases. A.t low- TaIues
of the inertia parameter the configuration is stable. The
frequency of oscillation is infinite at the asymptotic -due
of the inertia parameter and decreases r~pidIy as the inertia
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frequency ~. of the system. k figure 3, the m~imUnl-
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the oscillation couId begin is pIotted against >Iach number
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effect to be noted is that, m ~he distance of the axis of rota-..
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ln figure 4, the value of reduced velocity l/L is plotkd
againsb Iocation of axis of rotation a for three hkch numbers.
The area inside the curve for a given hfac]l number is the
unstable region. The lower branch of each curve is tisymp-
totic to a = —0.5 (quarter chord), but the upper branch has
a maximum depending on the hlach number. For M = O,
corresponding to the results of reference 4, and for M = 0.5
the maximum value of a appears to be approximately —5.5;
for 111 = 0.7 the maximum l’alue of a is approximately –7.

lL should he noted that., for an airplane or missile having a
comparatively short tail l~ngth (corresponding to the values
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of a in this report), an oscillation invoIving a yarving motion
of the vertical tail or a. pitching motion of the horizontal tail
may be an instability of the type considered in this report.
.%s a point of interest, values of the inertia parameter for
usual aircraft. configurations when the vertical taiI is consid-
ered as the Ming surface vary from 2,000 to 20,000 at sea
lWEJ and would be increased by a factor of 10 for 60,000 feet.
Since the inertia of an aircraft is usually larger about the
vertical axis than about the horizontal axis, it appears that
t}iis type of analysis might be more applicable to the yawing
motion. It should be noted, that. the calculations are based
on two-dimemqional aerod.ynarnic coefficients and the effect
(}f aspectratio,especia]l.yifa tailsurface isconsidered, can

lw appreciable.’

lrsfigure~, the effectof structural damping isshown for

an axis-of-rotation Iocation a = — 1.24 and 31 = O. The
flutter-speed parameter o/bco=is plotted against the inertia
parameter for se-reral values of structural damping coe5-
eient g=. lt is apparent that a small amount of structural
dtimping has a very great effect on the flutter speed, espe-
cia~y it the Iow density or high-altitude portion of the figure.

For instance, at a value of
I=

—--=18,000, a value of g= = 0.01
~Pb’

raises the flutter veIocity by a factor of 3 abo~e the zero-
damping curve, and a _ralue of g= = 0.02 raises the flutter
velocity by a factor of 5. How-ever, structural damping did
not influence the minimum (asymptotic) value of the inertia
pnrameter at which the oscillation could begin.

APPARATUS AND TEST PROCEDURE

lle tests were conducted in the Langley A.S-foot flutter
research tunnel at low speeds (0.06< 11< 0.3). This tunneI
can be operated at any pressure from atmospheric to 1/2

inch of mercury to pro-ride a Iarge range of the inertia pa-
rameter IJ~Pbd.

.4 diagram of the mocleI and test section is shown in figure
t.i with aIl the pertinent dimensions and parameters. The
geometric %~pect ratio was 5.87. Since the wing tips were
mounted close to the tunneI walls, an effective aspect ratio
somewlmt larger than the geometric aspect ratio -was prob-
ably obtained. The wing was pivoted on ball bearings, and
coil springs were fastened to the arms tQ pro-ride structural
restraint..

.$ smaII Iever was inserted through the tumel wail and
sealed with rubber tub~~ so that the WiIW could be disturbed
\rhiIe the test was being conducted. It was found whiIe
conducting the teststhat the oscillationcouid be started at.

a slightly]OW= fluidyelocity ifthe wing were disturbed by
means of the Ie-wr than if the wing were not. disturbed.
After the completion of the tests, the damping characteristics
of the bearings were investigated, and it was found that. the
~a.mping g= w-as considerably greater for Iow-amplitude
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oscillations than for the high-amplitude oscillations. This
variation of dampi~m with amplitude can account for the fact
pre-riously mentioned that the model would start oscillating
at SfightlyIow-erairspeedifthe model -were disturbed with

the lever than if it were Ieft to the inherent air turbulence
of the tunnel.

EXPERIMENTAL RESULTS

The experimental resuIts are plotted in figure 5 where. the
ordinate is the flutter-speed coefficient v/ba~, and the abscissa
is the inertia parameter IJrpb4. Theoretical cum-es for four
di.fTerenk‘values of damping are given, and the experimental. ._
curve is show-n.

The values of the experimental curve at the high-altitude
(Iow-density) range are in close agreement with the theoretical _.=
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Cllrvc for ga=o.oos. From an examination of the records,
it appears that a damping coefllcient of 0.015 >g~>0.008
lvw obtained; ‘a more exact det.erminat ion was not possible
because of the dependence of the damping on the amplitude
of oscillation,

The important facts to be noted are, first, that a. single-
degree-of-freedom oscillation was obtained and, second, that
the trend in the lower-density region w-as of the same order
of magnitude as that. of the theoretical curves with damping.
The reason for the discrepancy at the higher-density part of
the plot is not lmown; a simiIar phenomenon has been found
in other cases for the more conventional type of flutter in-
voIving more than one degree of freedom.

From observations of the tests, it appears that the single-
degree-of-freedorn oscillation discussed in this report is a mild
type of flutter, as contrasted to the more. destructive type
of flu~ter usually associated with coupled ffutf er. This type
of instability might become of importance in airplane
stability considerfitionsj and the possible application to
phenomena such m snahg should not. be overlooIied.
It must be realized that three-dimensional effects may
exercise some modification of these results.

CONCLUSIONS I
.% study of single-degree-of-freedom pit thing oscillations

of a wing has been presented. This study incIudes the effects
of 1 [ach number and structural damping and is primarily
an extension of a recent paper by SmiIg, in which incom-
pressible flow was considered. The actuaI existence of
single-degree-of-freedom flutter was demonstrated by some
low-speed tests of a wing, pi~-oted a short. distance ahead of
the leading edge with a geometric aspect ratio of 5.87.

The. following conclusions may be drawn:
1. The existence of single-degree-of-Jreedorn pitching

oscilktionshas been experimentally demonstrated.

2. The experimental data are in closeagreement with the

theoreticalvalues for high values of the inertiaparameter.

At low values of the inertia pmrameter, the experimental
data are. in poor agreement with the theory.

COMMITIEE FOR .4ERONAUTICS

3. Structural damping g= has an ~ppreciable effec~ on this
instability and increases the flutter speed,

4. Thu anaIyt.icaIresuItsshow that an increase of llach

number reduces the range of values of an inertia parmmter
for which a configuration would be str~bIe. The results are
based on two-dimensional coefflcient,s and it is possible that
aspect ratio couId have a great effect.

5. The flutter seems to be of a mild variety, in tha~ it
would not necesswily cause struchlral faihlre, but the
possibIe appIic.ation to phenomena such as sna]iing for air-
craft having a short Jail length should noL be overloolccd.

LANGLET ,&ERONAUTICAL LABORATORY,

llATIONAL .4DVISORY COMMITTEE FOR ilERONAUTICS,

LANGLEY FIELD, VA., Ayri[ 10, 1951.
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